66 research outputs found

    Characterization and valuation of uncertainty of calibrated parameters in stochastic decision models

    Full text link
    We evaluated the implications of different approaches to characterize uncertainty of calibrated parameters of stochastic decision models (DMs) in the quantified value of such uncertainty in decision making. We used a microsimulation DM of colorectal cancer (CRC) screening to conduct a cost-effectiveness analysis (CEA) of a 10-year colonoscopy screening. We calibrated the natural history model of CRC to epidemiological data with different degrees of uncertainty and obtained the joint posterior distribution of the parameters using a Bayesian approach. We conducted a probabilistic sensitivity analysis (PSA) on all the model parameters with different characterizations of uncertainty of the calibrated parameters and estimated the value of uncertainty of the different characterizations with a value of information analysis. All analyses were conducted using high performance computing resources running the Extreme-scale Model Exploration with Swift (EMEWS) framework. The posterior distribution had high correlation among some parameters. The parameters of the Weibull hazard function for the age of onset of adenomas had the highest posterior correlation of -0.958. Considering full posterior distributions and the maximum-a-posteriori estimate of the calibrated parameters, there is little difference on the spread of the distribution of the CEA outcomes with a similar expected value of perfect information (EVPI) of \$653 and \$685, respectively, at a WTP of \$66,000/QALY. Ignoring correlation on the posterior distribution of the calibrated parameters, produced the widest distribution of CEA outcomes and the highest EVPI of \$809 at the same WTP. Different characterizations of uncertainty of calibrated parameters have implications on the expect value of reducing uncertainty on the CEA. Ignoring inherent correlation among calibrated parameters on a PSA overestimates the value of uncertainty.Comment: 17 pages, 6 figures, 3 table

    VLA 1.4 GHz Catalogs of the Abell 370 and Abell 2390 Cluster Fields

    Full text link
    We present 1.4 GHz catalogs for the cluster fields Abell 370 and Abell 2390 observed with the Very Large Array. These are two of the deepest radio images of cluster fields ever taken. The Abell 370 image covers an area of 40'x40' with a synthesized beam of ~1.7" and a noise level of ~5.7 uJy near field center. The Abell 2390 image covers an area of 34'x34' with a synthesized beam of ~1.4" and a noise level of ~5.6 uJy near field center. We catalog 200 redshifts for the Abell 370 field. We construct differential number counts for the central regions (radius < 16') of both clusters. We find that the faint (S_1.4GHz < 3 mJy) counts of Abell 370 are roughly consistent with the highest blank field number counts, while the faint number counts of Abell 2390 are roughly consistent with the lowest blank field number counts. Our analyses indicate that the number counts are primarily from field radio galaxies. We suggest that the disagreement of our counts can be largely attributed to cosmic variance.Comment: 13 pages, accepted for publication in ApJ

    Comparative economic evaluation of data from the ACRIN national CT colonography trial with three cancer intervention and surveillance modeling network microsimulations

    Get PDF
    Purpose: To estimate the cost-effectiveness of computed tomographic (CT) colonography for colorectal cancer (CRC) screening in average-risk asymptomatic subjects in the United States aged 50 years. Materials and Methods: Enrollees in the American College of Radiology Imaging Network National CT Colonography Trial provided informed consent, and approval was obtained from the institutional review board at each site. CT colonography performance estimates from the trial were incorporated into three Cancer Intervention and Surveillance Modeling Network CRC microsimulations. Simulated survival and lifetime costs for screening 50-year-old subjects in the United States with CT colonography every 5 or 10 years were compared with those for guideline-concordant screening with colonoscopy, flexible sigmoidoscopy plus either sensitive unrehydrated fecal occult blood testing (FOBT) or fecal immunochemical testing (FIT), and no screening. Perfect and reduced screening adherence scenarios were considered. Incremental cost-effectiveness and net health benefits were estimated from the U.S. health care sector perspective, assuming a 3% discount rate. Results: CT colonography at 5- and 10-year screening intervals was more costly and less effective than FOBT plus flexible sigmoidoscopy in all three models in both 100% and 50% adherence scenarios. Colonoscopy also was more costly and less effective than FOBT plus flexible sigmoidoscopy, except in the CRC-SPIN model assuming 100% adherence (incremental cost-effectiveness ratio: 26300perlifeyeargained).CTcolonographyat5and10yearscreeningintervalsandcolonoscopywerenetbeneficialcomparedwithnoscreeninginallmodelscenarios.The5yearscreeningintervalwasnetbeneficialoverthe10yearintervalexceptintheMISCANmodelwhenassuming10026 300 per life-year gained). CT colonography at 5- and 10-year screening intervals and colonoscopy were net beneficial compared with no screening in all model scenarios. The 5-year screening interval was net beneficial over the 10-year interval except in the MISCAN model when assuming 100% adherence and willingness to pay 50 000 per life-year gained. Conclusion: All three models predict CT colonography to be more costly and less effective than non-CT colonographic screening but net beneficial compared with no screening given model assumptions

    Emulator-based Bayesian calibration of the CISNET colorectal cancer models

    Get PDF
    PURPOSE: To calibrate Cancer Intervention and Surveillance Modeling Network (CISNET) 's SimCRC, MISCAN-Colon, and CRC-SPIN simulation models of the natural history colorectal cancer (CRC) with an emulator-based Bayesian algorithm and internally validate the model-predicted outcomes to calibration targets.METHODS: We used Latin hypercube sampling to sample up to 50,000 parameter sets for each CISNET-CRC model and generated the corresponding outputs. We trained multilayer perceptron artificial neural networks (ANN) as emulators using the input and output samples for each CISNET-CRC model. We selected ANN structures with corresponding hyperparameters (i.e., number of hidden layers, nodes, activation functions, epochs, and optimizer) that minimize the predicted mean square error on the validation sample. We implemented the ANN emulators in a probabilistic programming language and calibrated the input parameters with Hamiltonian Monte Carlo-based algorithms to obtain the joint posterior distributions of the CISNET-CRC models' parameters. We internally validated each calibrated emulator by comparing the model-predicted posterior outputs against the calibration targets.RESULTS: The optimal ANN for SimCRC had four hidden layers and 360 hidden nodes, MISCAN-Colon had 4 hidden layers and 114 hidden nodes, and CRC-SPIN had one hidden layer and 140 hidden nodes. The total time for training and calibrating the emulators was 7.3, 4.0, and 0.66 hours for SimCRC, MISCAN-Colon, and CRC-SPIN, respectively. The mean of the model-predicted outputs fell within the 95% confidence intervals of the calibration targets in 98 of 110 for SimCRC, 65 of 93 for MISCAN, and 31 of 41 targets for CRC-SPIN.CONCLUSIONS: Using ANN emulators is a practical solution to reduce the computational burden and complexity for Bayesian calibration of individual-level simulation models used for policy analysis, like the CISNET CRC models.</p

    Cost-effectiveness of a multitarget stool DNA test for colorectal cancer screening of Medicare beneficiaries

    Get PDF
    Background In 2014, the Centers for Medicare and Medicaid Services (CMS) began covering a multitarget stool DNA (mtSDNA) test for colorectal cancer (CRC) screening of Medicare beneficiaries. In this study, we evaluate

    Control of CCND1 ubiquitylation by the catalytic SAGA subunit USP22 is essential for cell cycle progression through G1 in cancer cells.

    Get PDF
    Overexpression of the deubiquitylase ubiquitin-specific peptidase 22 (USP22) is a marker of aggressive cancer phenotypes like metastasis, therapy resistance, and poor survival. Functionally, this overexpression of USP22 actively contributes to tumorigenesis, as USP22 depletion blocks cancer cell cycle progression in vitro, and inhibits tumor progression in animal models of lung, breast, bladder, ovarian, and liver cancer, among others. Current models suggest that USP22 mediates these biological effects via its role in epigenetic regulation as a subunit of the Spt-Ada-Gcn5-acetyltransferase (SAGA) transcriptional cofactor complex. Challenging the dogma, we report here a nontranscriptional role for USP22 via a direct effect on the core cell cycle machinery: that is, the deubiquitylation of the G1 cyclin D1 (CCND1). Deubiquitylation by USP22 protects CCND1 from proteasome-mediated degradation and occurs separately from the canonical phosphorylation/ubiquitylation mechanism previously shown to regulate CCND1 stability. We demonstrate that control of CCND1 is a key mechanism by which USP22 mediates its known role in cell cycle progression. Finally, USP22 and CCND1 levels correlate in patient lung and colorectal cancer samples and our preclinical studies indicate that targeting USP22 in combination with CDK inhibitors may offer an approach for treating cancer patients whose tumors exhibit elevated CCND1

    Characterizing blood metabolomics profiles associated with self-reported food intakes in female twins

    Get PDF
    Using dietary biomarkers in nutritional epidemiological studies may better capture exposure and improve the level at which diet-disease associations can be established and explored. Here, we aimed to identify and evaluate reproducibility of novel biomarkers of reported habitual food intake using targeted and non-targeted metabolomic blood profiling in a large twin cohort. Reported intakes of 71 food groups, determined by FFQ, were assessed against 601 fasting blood metabolites in over 3500 adult female twins from the TwinsUK cohort. For each metabolite, linear regression analysis was undertaken in the discovery group (excluding MZ twin pairs discordant [≥1 SD apart] for food group intake) with each food group as a predictor adjusting for age, batch effects, BMI, family relatedness and multiple testing (1.17x10-6 = 0.05/[71 food groups x 601 detected metabolites]). Significant results were then replicated (non-targeted: P<0.05; targeted: same direction) in the MZ discordant twin group and results from both analyses meta-analyzed. We identified and replicated 180 significant associations with 39 food groups (P<1.17x10-6), overall consisting of 106 different metabolites (74 known and 32 unknown), including 73 novel associations. In particular we identified trans-4-hydroxyproline as a potential marker of red meat intake (0.075[0.009]; P = 1.08x10-17), ergothioneine as a marker of mushroom consumption (0.181[0.019]; P = 5.93x10-22), and three potential markers of fruit consumption (top association: apple and pears): including metabolites derived from gut bacterial transformation of phenolic compounds, 3-phenylpropionate (0.024[0.004]; P = 1.24x10-8) and indolepropionate (0.026[0.004]; P = 2.39x10-9), and threitol (0.033[0.003]; P = 1.69x10-21). With the largest nutritional metabolomics dataset to date, we have identified 73 novel candidate biomarkers of food intake for potential use in nutritional epidemiological studies. We compiled our findings into the DietMetab database (http://www.twinsuk.ac.uk/dietmetab-data/), an online tool to investigate our top associations

    Shared genetic risk between eating disorder- and substance-use-related phenotypes:Evidence from genome-wide association studies

    Get PDF
    First published: 16 February 202

    Genomic Relationships, Novel Loci, and Pleiotropic Mechanisms across Eight Psychiatric Disorders

    Get PDF
    Genetic influences on psychiatric disorders transcend diagnostic boundaries, suggesting substantial pleiotropy of contributing loci. However, the nature and mechanisms of these pleiotropic effects remain unclear. We performed analyses of 232,964 cases and 494,162 controls from genome-wide studies of anorexia nervosa, attention-deficit/hyper-activity disorder, autism spectrum disorder, bipolar disorder, major depression, obsessive-compulsive disorder, schizophrenia, and Tourette syndrome. Genetic correlation analyses revealed a meaningful structure within the eight disorders, identifying three groups of inter-related disorders. Meta-analysis across these eight disorders detected 109 loci associated with at least two psychiatric disorders, including 23 loci with pleiotropic effects on four or more disorders and 11 loci with antagonistic effects on multiple disorders. The pleiotropic loci are located within genes that show heightened expression in the brain throughout the lifespan, beginning prenatally in the second trimester, and play prominent roles in neurodevelopmental processes. These findings have important implications for psychiatric nosology, drug development, and risk prediction.Peer reviewe
    corecore